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We show that the thermodynamic entropy density is proportional to the largest Lyapunov exponent �LLE� of
a discrete hydrodynamical system, a deterministic two-dimensional lattice gas automaton. The definition of the
LLE for cellular automata is based on the concept of Boolean derivatives and is formally equivalent to that of
continuous dynamical systems. This relation is justified using a Markovian model. In an irreversible process
with an initial density difference between both halves of the system, we find that Boltzmann’s H function is
linearly related to the expansion factor of the LLE although the latter is more sensitive to the presence of
traveling waves.
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I. INTRODUCTION

The relation between thermodynamics and the underlying
chaotic properties of a system is of great relevance in the
foundations of statistical mechanics �1,2� and has attracted
much interest. What is the relation between chaotic dynamics
and thermodynamics? Is chaos relevant for thermodynamics?
Some interesting results have been found for some models.
In the case of a family of simple liquids, including Lennard-
Jones, a relation has been found between the Kolmogorov-
Sinai entropy and the thermodynamic entropy �3�. Lorentz
gases have been extensively studied and relationships be-
tween chaotic dynamical properties and transport coefficients
have been established �4–8�. The discussion of this problem
for other simple models and maps is extensive �9–13�.

Lorentz gases are essentially one-particle systems. In this
paper we present a simple model of a gas with a large num-
ber of interacting particles and find interesting relations be-
tween dynamic and thermodynamic quantities, somewhat
motivated by Bernoulli systems. For these, the Kolmogorov-
Sinai entropy is on the one hand the sum of the positive
Lyapunov exponents and, on the other, the thermodynamic
entropy scaled by a time constant corresponding to the cor-
relation time �14,15�.

The model we will study is a deterministic lattice gas
cellular automaton �LGCA�. LGCA are simple models with
hydrodynamical behavior �16–18�. In particular, the D2Q9
LGCA is a two-dimensional model with nine velocities and
is one of the simplest models where equilibrium thermody-
namics can be found with a nontrivial temperature �19�. For
cellular automata, Lyapunov exponents can be defined using
Boolean derivatives �20�. This definition is formally similar
to that of continuous dynamical systems, a long time average
of the logarithm of the linearized expansion factor �21�. We
also look for a relation between Boltzmann’s H function in a
simple irreversible process and the logarithm of the expan-
sion factor.

The paper is organized as follows. In Sec. II we present a
deterministic version of the D2Q9 model together with an
introduction to Lyapunov exponents of cellular automata. In
Sec. III we discuss the equilibrium thermodynamics of the
D2Q9 model, and in Sec. IV we show there is a close rela-
tionship between the equilibrium entropy of the model and
its largest Lyapunov exponent. This relationship is explained
by finding the Kolmogorov-Sinai entropy of a Markov chain
which relates the thermodynamic entropy to the largest
Lyapunov exponent. We also show that Boltzmann’s H func-
tion goes to its equilibrium value in an irreversible process in
the same way the Lyapunov exponent does. We end with a
discussion on why these quantities are related.

II. D2Q9 MODEL

The D2Q9 model is defined on a two-dimensional square
lattice �22�. The evolution is in discrete time steps where unit
mass particles at every site r can move with one of nine
velocities c0= �0,0�, c1= �1,0�, c2= �0,1�, c3= �−1,0�,
c4= �0,−1�, c5= �1,1�, c6= �−1,1�, c7= �−1,−1�, and c8= �1,
−1�. The state of the automaton is given by the set of occu-
pation numbers s�t�= �sk�r , t��, where sk�r , t�=1 �0� indicates
the presence �absence� of a particle with velocity ck at site r
and time t. An exclusion principle forbids the presence of
more than one particle in a given site and a given time with
a given velocity.

The time evolution of the system is given by collision and
streaming operations. In the collision step, the particles at
every site change their velocities conserving mass, momen-
tum, and energy. In the streaming operation particles move to
neighboring sites according to their velocities.

Since the number of states for a given site is finite �29�,
the local collision operator C is generally implemented as a
look-up table. Given a local configuration, the conservation
constraints may not define the outgoing state completely as
the example in Fig. 1 shows. If any one of the six states
shown is chosen as the input state, any one of the other six
states can be the output state. Therefore, the C look-up table
has several columns for all the possible output states. In or-
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der to make the automaton deterministic, we first find for all
input states the number of output states. We then find the
least common multiplier of the number of output states and
construct a new C look-up table with this number of col-
umns. These are filled by repeating the output states the re-
quired number of times. The least common multiplier is 60,
so the rows which have any one of the input states of Fig. 1
are repeated ten times. At the beginning we assign an integer
random number ��r� to each site to be used in choosing the
column from which the output state is chosen �quenched
disorder�. That is

sk�r,t + 1� = Ck�s0�r,t�, . . . ,s8�r,t�,��r�� . �1�

The choice of the quenched disorder is analogous to the ran-
dom disposition of scatterers in a wind tree or other similar
Lorentz gases �23,24�.

The evolution of the model can also be made reversible.
In order to do so, the collision table must satisfy the condi-
tion that in every column s=ICIC�s� holds, where I denotes
the operator that inverts the velocities of any state s. This
means that a collision C followed by an inversion I and
another collision and inversion leave the state unchanged
when it is taken from the same column in the collision table
as we show in Fig. 2. Once we have a look-up table that is
deterministic as described above, the elements in each row
are rearranged to satisfy the reversibility condition.

In order to introduce the concept of Lyapunov exponents
for such a system, it is convenient to simplify the notation
used. We use the index n to indicate the position r and the
velocity k, with n=1, . . . ,9L, where L is the number of sites.
A configuration of the LGCA at a given time is given by 9L
occupation numbers �bits�, and its evolution can be seen as
an application of a set of Boolean functions,

sn�t + 1� = Fn�s�t�� . �2�

The functions Fn represent different entries of the collision
table and differ in the velocity index k and quenched disorder
��r�. However, since the distribution of the disorder is uni-
form and, as shown in the following, the correlations among
variables decay very fast, the system is translationally invari-
ant at a mesoscopic level.

Let s�0� and x�0� be two initially close configurations, for
example, all the components of x�0� may be equal to those of
s�0� except for one. We define the bitwise difference between
these two configurations with the term “damage.” The small-
est possible damage is one and the damage vector v�0� has
one in the component where s�0� and x�0� differ and has
zeroes in all the others. If this damage grows on average
during time, the trajectory is unstable with respect to the
smallest perturbation. However, due to the discrete nature of
LGCA, defects may annihilate during time evolution, alter-
ing the measure of instability of trajectories. The correct way
of testing for instability is that of considering all possible
ways of inserting the smallest damage in a configuration us-
ing as many replicas as the number of components of the
configuration and letting them evolve for one time step
counting if the number of damages has grown or diminished.
The ensemble of all possible replicas with one damage each
is the equivalent of the tangent space of discrete systems.

The task of computing the evolution in tangent space is
clearly daunting, but by exploiting the concept of Boolean
derivatives �20,25� it is possible to develop a formula very
similar to the one used in continuous systems. The Boolean
derivative is defined by

�Fn�s�
�sp

= �Fn�. . . ,sp, . . .� − Fn�. . . ,1 − sp. . .�� �3�

with n , p=1, . . . ,9L. This quantity measures the sensitivity
of the function Fn with respect to a change in sp. The Jaco-
bian matrix J�s� has components Jnp=�Fn�s� /�sp.

We now consider the map

v�t + 1� = J�s�t��v�t� , �4�

with v�0� as mentioned above. It is easy to check that
�v�t��=�ivi�t� is the number of different paths along which a
damage may grow in tangent space during time evolution,
i.e., with the prescription of just one defect per replica �20�.
If there is sensitivity with respect to initial conditions, one
expects that �v�T�� / �v�0��	exp��TT� for large T, where �T is
the largest finite time Lyapunov exponent �LLE�. It then fol-
lows that

�T =
1

T
�
t=1

T−1

log u�t� = 
log u�T, �5�

with u�t�= �v�t�� / �v�t−1�� the expansion factor of the LLE.
The definition should include the limit when T→�, but in
practice we always evaluate the finite time LLE. The LLE
depends in principle on the initial configuration s�0�, initial
damage v�0�, and quenched disorder �, but in practice it
assumes the same value for all trajectories corresponding to
the same macroscopic observables when T is sufficiently

FIG. 1. All these states have the same number of particles, mo-
mentum, and energy. An arrow represents the presence of a particle
with the velocity of the arrow, and the open circle represents a
particle at rest.

C

C

II

FIG. 2. In this example, the input state at some fixed site is the
one shown on the left of Fig. 1 and in the column number assigned
to this site, the output state is the fourth one of that figure. These are
shown in the upper part of this figure. Then, by inverting the ve-
locities we get the state on the lower left and the collision table
should contain in the same column for this input state the output
state shown on the lower right that upon inversion of the velocities
yields the original incoming state.
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large. The LLE of cellular automata as defined above has
been used to classify elementary and totalistic Boolean cel-
lular automata �20,26�.

III. THERMODYNAMICS OF THE D2Q9 MODEL

The single-particle velocity distribution functions fk�r , t�
are defined as the average number of particles at site r with
velocity ck at time t over R samples that share the same
quenched disorder � and macroscopic constraints with dif-
ferent microscopic initial configurations.

We checked that the single-site two-particle correlation
function factorizes into the product of single-particle distri-
butions before and after the collision in equilibrium and out
of equilibrium conditions. In equilibrium, the correlation
function decays to zero for just one lattice spacing. Out of
equilibrium, starting with very different configurations in the
two halves of the system, the correlation function, still being
quite small, exhibits a correlation length of some lattice
spacings for a short time. This corresponds to the coherent
motion of particles in a shock wave, where the local density
is near to zero or nine. However, this correlation quickly
disappears; although the motion is correlated at a macro-
scopic level, as soon as the local density of particles is dif-
ferent from the extremes �for which the collision table has
few output configurations� the velocities quickly decorrelate.

The thermodynamic entropy density can be found analyti-
cally in the thermodynamic limit as follows �27�. Let

N = �
k

Nk, E = �
k

�kNk, �6�

with N and E the number of particles and total energy, re-
spectively, Nk the number of particles in direction k, and �0
=0, �1,2,3,4=1 /2, and �5,6,7,8=1. The number density n, the
equilibrium density functions fk, and the energy density e are

n =
N

L
, fk =

Nk

L
, e =

E

L
, �7�

with L the number of sites in the lattice. The microcanonical
partition function � is

� =� 
k

dNk��N − �
k

Nk���E − �
k

�kNk�
� ��N0, . . . ,N8� , �8�

with � the Dirac-� function and

� = 
k

L!

Nk ! �L − Nk�!
�9�

the number of microscopic states in Fermi-Dirac statistics.

The thermodynamic entropy is S�E ,N ,L�
=log ��E ,N ,L�. Using Stirling’s approximation and the
Fourier transform of the � function,

S = log�L9� 
k

dfk� dp1dp2 exp�L	�� , �10�

with

	 = − �
k

�fk log fk + �1 − fk�log�1 − fk�� + ip1�n − �
k

fk�
+ ip2�e − �

k

�kfk� . �11�

The integrals of Eq. �10� can be evaluated using the saddle
point method and the result is exact in the thermodynamic
limit. The thermodynamic limit entropy density s is

s�e,n� = lim
L→�

1

L
S�eL,nL,L�

= − �
k

� f̂ k log f̂ k + �1 − f̂ k�log�1 − f̂ k�� . �12�

In the last expression f̂0 , . . . f̂8 , p̂1 and p̂2 maximize 	 given
by Eq. �11�.

The quantities p1 and p2 are related to temperature and
chemical potential. Taking the partial derivative of 	 with
respect to fk and equaling to zero we find that

log� f̂ k

1 − f̂ k

� = − ip̂1 − ip̂2�k �13�

and that

f̂ k = �1 + exp�ip̂1 + ip̂2�k��−1. �14�

Using Eq. �13� the entropy density is

s = − �
k

�log�1 − f̂ k�� + ip̂1 + ip̂2�k. �15�

The Euler equation is

s =
e

T
+

P

T
−


N

T
, �16�

where P is the pressure and 
 is the chemical potential.
Comparing the last two expressions

1

T
= ip̂2, �17�

−



T
= ip̂1, �18�

P

T
= − �

k

log�1 − f̂ k� . �19�

Now, the equilibrium distribution functions are

f̂ k = �1 + exp��k/T − 
/T��−1. �20�
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The distribution functions f̂0, f̂1, and f̂5 define the equi-

librium state since f̂1= f̂2= f̂3= f̂4 and f̂5= f̂6= f̂7= f̂8. These
satisfy the conservation equations of mass end energy and
maximize 	. We also note that these distributions satisfy
another condition equivalent to the latter. From Eq. �13� for
k=1,5 and for k=0 and Eq. �18�




T
= log� f0

1 − f0
� = log� f1

1 − f1
�2�1 − f5

f5
� .

Then

f1
2�1 − f0 − f5� = f0f5�1 − 2f1� . �21�

This last expression, together with mass and energy conser-
vation, determines the equilibrium values of the distribution
functions. In Fig. 3 we show the values of the equilibrium
distribution functions as continuous curves, together with the
result of numerical simulations. The agreement between nu-
merical simulations and computed values of the probability
distributions is almost perfect. Further investigations on cor-
relations in out of equilibrium conditions are reported in Sec.
IV.

IV. RESULTS AND DISCUSSION

In Fig. 4 we show the entropy density s=S /L and the LLE
� as a function of e for fixed n both calculated numerically.
The entropy density is found by substituting the numerical
values of fk, for example, those of Fig. 3, in Eq. �12�. Due to
the exclusion principle there is a Fermi energy eF and a
maximum energy density eM that depend on the number den-
sity n �see Fig. 3�. The entropy density grows for eF�e
�e� and then decreases for e��e�eM with e�=2n /3. The
energy density e� is the value for which f0= f1= f5. The larg-
est Lyapunov exponent � shows the same behavior having a
maximum also at e�. The results shown suggest that s is
proportional to �. This is emphasized in Fig. 5 where the

data lie near a straight line for different values of n. This
result shows that the LLE grows with the number of avail-
able states measured by the equilibrium entropy.

The proportionality between the thermodynamic entropy
density and the largest Lyapunov exponent can be under-
stood in the framework of the stochastic approximation of a
chaotic dynamics �28�. In this approximation, the dynamics
is considered at discrete time intervals and generates a dis-
crete and finite partition of coarse-grained states labeled by
an index i, with i=1, . . . ,M. The evolution is represented by
a Markov chain where Wij is the transition probability from
state j to state i and �iWij =1. The asymptotic probability
distribution is denoted by pi, with �ipi=1 and � jWijpj = pi.
The Kolmogorov-Sinai entropy K per time interval � is
�21,28�

K = − �
j

pj�
i

Wij log Wij , �22�

and the entropy density s is

0
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1.5 2 2.5 3 3.5 4

e

f̂0

f̂1

f̂5

FIG. 3. Distribution functions in equilibrium as a function of e
for n=4. The continuous curves are the calculated values, and the
symbols are the results of numerical simulations. For e=eF there is
a rest particle in all sites and no fast particles moving along the
diagonals. The other three particles can occupy one of the four slow
directions. For e=eM there are no rest or slow particles, the four
particles are moving along the diagonals.
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FIG. 4. Entropy density s �solid line� and LLE � �dashed line�
for n=4, simulations with R=40 in a 40�40 lattice.
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FIG. 5. We show s versus � for n=2 �diamonds�, n=4 �solid
line�, n=4.5 �dotted line�, and n=6 �pluses�. The simulations are
performed for different values of e from eF�n� to eM�n�.
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s = − �
i

pi log pi. �23�

For Bernoulli systems the equilibrium is reached in just
one time step, Wij = pj, and trivially K=�−1s �29�. For a
somewhat more general process, we assume that pi=1 /M
�microcanonical distribution� so that s=log M. We further
assume that the transition matrix is irreducible �so that the
system is ergodic� and that in each row and column there are
iM nonzero equal entries with values 1 /iM and 0�i
�1. Then

K = 
log � + log M , �24�

where 
log � is the average of log i.
If we further assume the validity of the Pesin relation

�30�, K equals the sum of positive Lyapunov exponents. For
many Hamiltonian systems and symplectic maps, the
Lyapunov spectrum takes the form �i��0�1− i / �2N��, where
�i is the ith Lyapunov exponent, i=0, . . . ,2N−1, and the
number of particles N is large. In these cases, the
Kolmogorov-Sinai entropy per degree of freedom is propor-
tional to the largest Lyapunov exponent �0. The proportion-
ality constant, however, may depend on the value of control
parameters, namely, the energy.

The shape of the Lyapunov spectrum is roughly linear for
the product of random matrices with the structure of
�weakly� locally coupled Hamiltonian chaotic systems �31�
and for coupled nonlinear oscillators �32�. If we assume that
also in other cases the shape of the spectrum �which in gen-
eral is not linear, see for instance Ref. �33� for the hard
spheres case� does not change with the energy, it follows that
s and � are linearly related. This last assumption is probably
the weakest one, at least for LGCA for which the Lyapunov
spectrum is ill-defined, and we think it is the main reason for
the discrepancy from linearity in Fig. 5.

In our model, the value of the LLE is related to the num-
ber of ones in the Jacobian matrix J defined by Eq. �3�. This
Jacobian matrix contains the linearized effects of the stream-
ing and collision operators. Streaming corresponds to a
scrambling of the components of the tangent vector v�t� and
therefore does not alter its norm. This is left to collisions
when more than one output configurations are possible. The
number of equivalent output configurations in the collision
table is small for the extreme values of number and energy
densities and larger for intermediate values. Similar consid-
erations apply to the number of equivalent configurations for
a given macroscopic distribution of density and velocities
and constitute the microscopic origin of the relation between
statistical and dynamical quantities.

We now discuss an irreversible process where a square
lattice is initially in an equilibrium state with the left and
right sides having different number and energy densities nL,
nR, eL, and eR. The system evolves toward equilibrium by
means of damped traveling waves. The single-site two-
particle correlation function, although small, exhibits a cor-
relation length of some lattice spacings for a short time.

Macroscopically, one observes a coherent motion of par-
ticles in a shock wave, where the local density is near zero or
nine. Although the motion is correlated at a macroscopic

level, as soon as the local density of particles is different
from the extremes �for which the collision table has few
output configurations� the velocities quickly decorrelate.

Boltzmann’s H function is defined by

H�t� = − �
r,k

fk�r,t�log fk�r,t� . �25�

In the numerical simulations the distribution functions are
averaged over R samples and the average Lyapunov expan-
sion factor is 
��= �1 /R��i=1

R log u�i�. As we show in Fig. 6,
the two quantities exhibit similar behavior. The Lyapunov
expansion factor exhibits more marked oscillations, indicat-
ing that it is more sensible to the local variations in density.
The inset of Fig. 6 shows that, disregarding oscillations, 
��
is linearly related to H for all the relaxation phase.

We can identify several time scales in this irreversible
process. There is a fundamental time scale, which is fixed to
unity. There is also a correlation time scale, which is of the
order of the mean free time which depends on the occurrence
of nontrivial collisions and is larger where the density is
either small or large. During shock waves, locally one may
have variations in density and therefore correlations, as al-
ready reported, of the order of some time steps. A third time
scale is given by the oscillations induced by the traveling
shock waves. This is a dynamical mesoscopic scale that de-
pends on the size of the system and is revealed by the oscil-
lations of 
�� shown in Fig. 6. The slowest time scale is
given by the relaxation to equilibrium, shown both by H and
by 
��.

The computation of 
�� is performed using a set of tan-
gent vectors �Eq. �4��, and these vectors constitute a sort of
local memory of the past state. In systems with local varia-
tions in density, as in our system in the presence of traveling
waves, statistical quantities such as H depend on the instan-
taneous state of the system, while dynamical ones such as 
��
depend also on the variations in this state. This factor may be
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FIG. 6. Boltzmann’s function H �thick line� and Lyapunov ex-
pansion factor 
�� �oscillating thin line� versus time t, simulations
with nL=7.2, eL=4.8, nR=1.8, eR=1.2, and R=40 on a 40�40
lattice. The inset shows that, disregarding the oscillations of 
��,
there is a linear relation between these quantities. The dashed line is
the best fit H=1.15
��+0.2.

THERMODYNAMIC ENTROPY AND CHAOS IN A DISCRETE … PHYSICAL REVIEW E 79, 041115 �2009�

041115-5



the origin of the different relation between statistical and
dynamical quantities in equilibrium and during the relaxation
phase.

V. FINAL REMARKS

The D2Q9 reversible LGCA model we have discussed
exhibits hydrodynamical and thermodynamical behavior. For
this model, the thermodynamic entropy density is propor-
tional to the largest Lyapunov exponent. Also, in a simple
irreversible process, Boltzmann’s H function is proportional
to the expansion factor of the largest Lyapunov exponent. A
simple stochastic coarse grained dynamics can explain the

proportionality between s and �. We note that this result does
not depend on the D2Q9 dynamics and should hold for other
possibly more realistic models. Finally, the fact that the ther-
modynamic entropy density and the LLE of the model are
proportional confirms that the definition of the latter is ap-
propriate.
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